Kit for DNA isolation from animal tissue and cell culture
I. INTENDED USE

The EXTRACTME DNA TISSUE KIT is designed for a rapid and efficient purification of high quality DNA from solid tissues (fresh, frozen, formalin-preserved or paraffin-embedded), physiological fluids, hair, rodent tails, insects and cell cultures. The isolation protocol and buffer formulations have been optimized for high isolation efficiency and DNA purity. The product is intended for research use only.

II. COMPONENTS OF THE KIT AND STORAGE CONDITIONS

<table>
<thead>
<tr>
<th>NUMBER OF ISOLATIONS</th>
<th>10 ISOLATIONS</th>
<th>50 ISOLATIONS</th>
<th>250 ISOLATIONS</th>
<th>Storage Conditions ¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue number</td>
<td>EM03-010</td>
<td>EM03-050</td>
<td>EM03-250</td>
<td></td>
</tr>
<tr>
<td>Catalogue number ²</td>
<td>EM04-010</td>
<td>EM04-050</td>
<td>EM04-250 ³</td>
<td></td>
</tr>
<tr>
<td>TL Buffer (Tissue Lysis Buffer)</td>
<td>3.8 ml</td>
<td>19 ml</td>
<td>94 ml</td>
<td>RT</td>
</tr>
<tr>
<td>Proteinase K ** (lyophilized)</td>
<td>1 tube</td>
<td>1 tube</td>
<td>5 tubes</td>
<td>-20°C ²</td>
</tr>
<tr>
<td>Proteinase Buffer</td>
<td>280 μl</td>
<td>1.4 ml</td>
<td>7 ml</td>
<td>RT</td>
</tr>
<tr>
<td>RNase A *** (lyophilized)</td>
<td>1 tube</td>
<td>1 tube</td>
<td>5 tubes</td>
<td>-20°C ³</td>
</tr>
<tr>
<td>RNase Buffer</td>
<td>100 μl</td>
<td>220 μl</td>
<td>1.1 ml</td>
<td>RT</td>
</tr>
<tr>
<td>TB Buffer (conc.) **** (Binding Buffer)</td>
<td>1.8 ml</td>
<td>10 ml</td>
<td>44 ml</td>
<td>RT</td>
</tr>
<tr>
<td>TW1 Buffer (conc.) **** (Wash Buffer 1)</td>
<td>3.3 ml</td>
<td>17 ml</td>
<td>82 ml</td>
<td>RT</td>
</tr>
<tr>
<td>TW2 Buffer (conc.) **** (Wash Buffer 2)</td>
<td>1.8 ml</td>
<td>9 ml</td>
<td>41 ml</td>
<td>RT</td>
</tr>
<tr>
<td>Elution Buffer</td>
<td>2 ml</td>
<td>10 ml</td>
<td>5 x 10 ml</td>
<td>RT</td>
</tr>
<tr>
<td>DNA Purification Columns</td>
<td>10 pcs</td>
<td>50 pcs</td>
<td>5 x 50 pcs</td>
<td>RT</td>
</tr>
<tr>
<td>Collection Tubes (2 ml)</td>
<td>10 pcs</td>
<td>50 pcs</td>
<td>5 x 50 pcs</td>
<td>RT</td>
</tr>
<tr>
<td>Bead-Beating Tubes*</td>
<td>10 pcs</td>
<td>50 pcs</td>
<td>5 x 50 pcs</td>
<td>RT</td>
</tr>
</tbody>
</table>

¹ RT – room temperature (+15°C to +25°C)
² After reconstitution, Proteinase K should be kept at -20°C.
³ After reconstitution, RNase A should be kept at +4°C for short term storage (several days) or in aliquots at -20°C.

* Refers only to the EXTRACTME DNA TISSUE PLUS KIT. The Bead-Beating Tubes have ceramic filling.
** Prior to the first use, add 1.4 ml Proteinase Buffer to a tube containing Proteinase K lyophilizate (in the kit for 10 isolations 280 μl of a buffer should be added).
Prior to the first use, add 220 μl RNase Buffer to a tube containing RNase A lyophilizate (in the kit for 10 isolations 100 μl of a buffer should be added).

Prior to the first use, add an appropriate amount of 96–100% ethanol to TB, TW1 and TW2 Buffers (see the instructions on the bottle label and in the table below). It is recommended to mark the bottle containing added alcohol.

<table>
<thead>
<tr>
<th>NUMBER OF ISOLATIONS</th>
<th>10 ISOLATIONS</th>
<th>50 ISOLATIONS</th>
<th>250 ISOLATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalogue number</td>
<td>EM03-010</td>
<td>EM03-050</td>
<td>EM03-250</td>
</tr>
<tr>
<td>Catalogue number°</td>
<td>EM04-010°</td>
<td>EM04-050°</td>
<td>EM04-250°</td>
</tr>
<tr>
<td>TB Buffer</td>
<td>1.8 ml</td>
<td>10 ml</td>
<td>44 ml</td>
</tr>
<tr>
<td>96–100% ethanol</td>
<td>2.7 ml</td>
<td>15 ml</td>
<td>66 ml</td>
</tr>
<tr>
<td>Total volume</td>
<td>4.5 ml</td>
<td>25 ml</td>
<td>110 ml</td>
</tr>
<tr>
<td>TW1 Buffer</td>
<td>3.3 ml</td>
<td>17 ml</td>
<td>82 ml</td>
</tr>
<tr>
<td>96–100% ethanol</td>
<td>3.3 ml</td>
<td>17 ml</td>
<td>82 ml</td>
</tr>
<tr>
<td>Total volume</td>
<td>6.6 ml</td>
<td>34 ml</td>
<td>164 ml</td>
</tr>
<tr>
<td>TW2 Buffer</td>
<td>1.8 ml</td>
<td>9 ml</td>
<td>41 ml</td>
</tr>
<tr>
<td>96–100% ethanol</td>
<td>4.2 ml</td>
<td>21 ml</td>
<td>96 ml</td>
</tr>
<tr>
<td>Total volume</td>
<td>6 ml</td>
<td>30 ml</td>
<td>137 ml</td>
</tr>
</tbody>
</table>

° Refers only to the EXTRACTME DNA TISSUE PLUS KIT.

In order to avoid evaporation, ensure that the buffer bottles are tightly closed before storing.

Expiry date

Under proper storage conditions the kit will remain stable for at least 12 months from opening or until the expiry date.
III. ADDITIONAL MATERIALS AND EQUIPMENT REQUIRED

→ 96–100% ethanol PFA
→ 1.5–2 ml sterile microcentrifuge tubes
→ automatic pipettes and sterile DNase-free tips
→ disposable gloves
→ microcentrifuge with rotor for 1.5–2 ml (≥ 11 000 x g)
→ dry block heater or water bath (up to 55°C)
→ vortex mixer

Might be necessary:
→ xylene – paraffin blocks
→ PBS buffer – cell cultures, formalin preserved tissues, physiological fluids
 Preparation: dissolve 8 g NaCl, 0.2 g KCl, 1.44 g Na₂HPO₄ and 0.24 g KH₂PO₄ in 800 ml H₂O. Set the pH to 7.4 with HCl. Fill up to 1000 ml and autoclave. Store at +4°C.
→ saline – physiological fluids
→ 1M DTT – hair
 Preparation: dissolve 1.54 g DTT in 10 ml H₂O. Aliquot and store at -20°C.
→ scissors, scalpel
→ bead-beating tubes with ceramic filling (cat. no. HPLM100, HPLM100a)
→ tissue homogenizer for 2 ml tubes
→ mechanical homogenizer with knives
→ thermomixer (shaking orbit of 2 mm minimum)
→ 50–75 ml smooth-stroke mortar with fitted piston
→ liquid nitrogen or dry ice
→ vortex mixer with a 2 ml tube adaptor
→ centrifuge with a rotor for 10–15 ml tubes
 (physiological fluids, cell cultures)
IV. PRINCIPLE

DNA purification procedure consists of four steps and utilizes spin DNA Purification Columns with membranes which efficiently and selectively bind nucleic acids. In the first isolation step, tissue is homogenized in order to disintegrate intercellular bonds (epithelial tissue) and fragmentize high-molecular proteins (muscle or connective tissue). Then homogenate is lysed by Proteinase K in optimized TL Buffer. At this stage, all the cellular membranes and proteins are degraded. When a metabolically active tissue is used for isolation, RNA is removed by RNase A. Homogenate is separated from undigested tissue remains by centrifugation and combined with chaotropic salts. Mixture is then applied to DNA Purification Column membrane and DNA is bound. A two-step washing stage effectively removes impurities and enzyme inhibitors. Purified DNA is eluted using a low ionic strength buffer or water (pH of 7.0–9.0) and can be used directly in all downstream applications such as qPCR, Southern blotting, DNA sequencing, enzymatic restriction, DNA ligation and so forth, or stored until ready to use.

V. QUALITY CONTROL

The quality of each production batch (LOT) of the EXTRACTME DNA TISSUE KIT is tested using of standard QC procedures. Purified DNA concentration and quality are evaluated by gel electrophoresis and spectrophotometer.

VI. PRODUCT SPECIFICATIONS

<table>
<thead>
<tr>
<th>SAMPLE MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ fresh or frozen solid tissue: 1–30 mg</td>
</tr>
<tr>
<td>→ formalin-preserved tissue: 1–30 mg</td>
</tr>
<tr>
<td>→ paraffin-embedded tissue: 1–30 mg</td>
</tr>
<tr>
<td>→ cell culture: 10^3–10^7 cells</td>
</tr>
<tr>
<td>→ physiological fluids (urine, PMR, peritoneal fluid): 1–5 ml</td>
</tr>
<tr>
<td>→ hair: 10–30 mg</td>
</tr>
<tr>
<td>→ insects: 1–30 mg</td>
</tr>
<tr>
<td>→ rodent tail: up to 30 mg</td>
</tr>
</tbody>
</table>
EFFICIENCY

The typical efficiencies of DNA isolation from fresh biological material are given in section XIII.

BINDING CAPACITY

~50 μg DNA

TIME REQUIRED

→ approx. 12 minutes (lysis time not included)
→ 30–40 minutes for mechanical homogenization
→ 1–16 hours for periodical shaking by vortexing

DNA PURITY

A_{260}/A_{280} ratio = 1.7 – 1.9

VII. SAFETY PRECAUTIONS

→ Tissue is treated as a biohazardous material for its potential pathogen content or health and life-threatening substances. While working with tissue, it is essential to comply with all safety requirements for working with biohazardous material.
→ It is advisable to conduct the entire isolation procedure in a Class II Biological Safety Cabinet or at laboratory burner as well as wearing disposable gloves and suitable lab coat at all times.
→ The use of sterile filter tips is recommended.
→ Avoid cross-contamination between sample preparations.
→ Guanidine salts' can form highly reactive compounds when combined with bleach or other oxidation components. In case of spillage, clean the surface with suitable laboratory detergent and water.
→ In case of spillage of liquid containing microorganisms, clean the contaminated surface with detergent-water solution.
VIII. RECOMMENDATIONS AND IMPORTANT NOTES

DNA elution
An optimal volume of Elution Buffer used should be chosen in line with the quantity of sample material and final DNA concentration expected. The use of 100–200 μl Elution Buffer is recommended when extracting from 2–10 mg of tissue or <10⁴ cells. However, while extracting from 10–30 mg of tissue or 10⁴–10⁷ cells the volume of Elution Buffer should be increased to 200 μl.

If a high DNA concentration is desired, the elution volume may be reduced to 50 μl. However, it may reduce the efficiency of DNA retrieval. It is essential to apply Elution Buffer precisely to the centre of the membrane.

When isolating from a insignificant amount of sample material, use 200 μl Elution Buffer and precipitate the DNA according to standard procedures.

In order to maximize the DNA retrieval, heat Elution Buffer to 80°C and incubate it on the membrane for 10 minutes.

If full DNA retrieval is required, a second, 100–200 μl elution should be performed. For the second elution, repeat steps 15–18 of the Isolation Protocol (see section XI), placing the DNA Purification Column in a new, sterile 1.5 ml Eppendorf tube.

Elution Buffer does not contain EDTA, which may interfere with some enzymatic reactions. If desired, DNA can alternatively be eluted from the DNA Purification Column with nuclease-free water (pH 7.0–9.0) or TE Buffer.

RNA contamination
Most fresh or frozen tissue contains more RNA than DNA, especially metabolically active tissues like glands, nerve tissue and epithelium. RNA may interfere with some enzymatic reactions, but does not inhibit PCR. If an RNA-free DNA sample is desired, add 4 μl of RNase A solution and incubate at 37°C for 5 minutes (step 3 of the Isolation Protocol, section XI).

Foam formation in TL Buffer
The non-ionic detergent content of lysis buffer may cause a foam appear after homogenization, vortexing or intensive pipetting. In order to eliminate the foam, centrifuge at 11 000 x g for 60 s.
IX. SAMPLE PREPARATION

A. FRESH OR FROZEN SOLID TISSUE

Quantity: 1–30 mg.

Sample material: animal or human tissues.

General procedure, applies to all homogenization methods

Divide the tissue into small fragments with tweezers and scissors or a scalpel. Follow one of the homogenization methods described below or go to step 1 of the Isolation Protocol (section XI).

Liquid nitrogen, dry ice (LN$_2$, CO$_2$)

1. Place tissue frozen in LN$_2$ or CO$_2$ in a previously chilled, sterile mortar. Using a chilled piston, carefully, but firmly crush the tissue into smaller pieces and then, into a pulp.
2. Transfer the powder thus obtained into a 2 ml tube containing 375 μl TL Buffer and go to step 1b of the Isolation Protocol (section XI).

⚠️ After pulping, a thin, sticky layer may be formed, rather than a powder. If this occurs, add 375 μl of TL Buffer to a mortar and reconstitute the tissue by pipetting and then transfer the lysate into a sterile, 2 ml tube. Remember to retrieve the tissue remains from the piston as well.

Homogenization using a mechanical homogenizer equipped with knives

1. Place the tissue in a 2 ml tube, add 100 μl TL Buffer and carefully homogenize with a sterile homogenizer tip.
2. After homogenization, retrieve the tissue remains from the knife tip by washing it with 275 μl TL Buffer. Combine the fractions thus obtained and transfer the entire volume to a new 2 ml tube.
3. Continue the isolation from step 1b of the Isolation Protocol (section XI).
Homogenization using a bead-beating tube
We recommend the use of homogenization bead-beating tubes (HPLM100, HPLM100a) or EXTRACTME DNA TISSUE PLUS (EM04), which contains tubes pre-filled with ceramic beads.

1. Add **150 μl TL Buffer** to a 2 ml ceramic bead-beating tube and suspend the sliced tissue in the buffer. Place the tube in a tissue homogenizer and homogenize at 3000–4000 x g for 30 s. If necessary, repeat the procedure.
 ▲ If evaluation of the degree of tissue fragmentation is compromised by foam formation, centrifuge the tube at 11 000 x g for 60s.
 ▲ If a tissue homogenizer is not available, the tissue may be homogenized by vortexing, using the appropriate 2 ml tube adaptor, for at least 5 minutes at maximum speed.

2. Add **225 μl TL Buffer** and mix by pipetting.
3. Add **25 μl Proteinase K** and **4 μl RNase A**. Mix by vortexing for 20 s. Incubate at 37°C for 5 min.

B. FORMALIN-PRESERVED TISSUE
Quantity: 1-30 mg.
Sample material: animal tissues preserved in 4% formalin under cooling conditions.

1. Remove the formalin by washing it from the tissue two or three times, using PBS buffer or H₂O.
 ▲ Formalin is an irritating agent. Do not monitor its removal by inhaling the fumes from a tube.
2. Continue the isolation following the procedure described for fresh or frozen solid tissue in section IXA.
C. PARAFFIN-EMBEDDED TISSUE

Quantity: 1-30 mg; **Sample material:** animal tissue embedded in paraffin block by standard histological procedure.

1. Prepare a fragment no larger than 30 mg by cutting it out of a paraffin block and place it in a 2 ml tube.
2. Add **1 ml xylene.** Mix by vortexing for 30 s.

 ☢️ **Xylene is toxic, irritating and very inflammable. Conduct the procedure in a working fume cupboard.**

3. Centrifuge at 15 000 x g for 5 min. Remove the supernatant by pipetting.
4. Repeat steps 2–3.
5. Add **1 ml 96–100% ethanol.** Mix by pipetting or vortexing for 15 s.
6. Centrifuge at 15 000 x g for 120 s. Remove the supernatant by pipetting.
7. Repeat steps 5–6.
8. In order to remove the remains of the ethanol, dry the pellet in the open tube at **50°C** for 5–20 min.
9. Add **375 μl TL Buffer** and mix by vortexing for 20 s.
10. Continue the isolation from step 1b of the Isolation Protocol (section XI).

D. CELL CULTURES

Quantity: 10^3-10^7 cells.

Sample material: cell suspension or adherent cells, fresh or frozen at -80°C or -196°C.

1. Thaw frozen cells at **37°C.** Centrifuge the cells suspended in growth medium or PBS buffer in a 15 ml falcon tube or an 2 ml Eppendorf tube at 3000 x g. If a compact cell pellet is not formed, wash the cells twice with **1 ml cold PBS buffer.**

2. Add **375 μl TL Buffer.** Mix thoroughly by vortexing for 30 s followed by pipetting.

 ☢️ **In some cases, where the cells tend to form either syncytia (myoblasts) or tight connections (epithelial cells) or they are high in number (approx. 10^7), it may be difficult to resuspend them in a TL Buffer. Should this happen, pipette carefully, using a ≥1000 μl pipette tip or a sterile syringe. Do not use filter tips.**

3. Transfer suspension obtained this way to a new 2 ml tube.
E. PHYSIOLOGICAL FLUIDS

Quantity: up to 5 ml of fluid.

Sample material: urine, cerebrospinal fluid, peritoneal fluid, pleural fluids, sputum.

For isolation from blood samples, the dedicated EXTRACTME DNA BLOOD KIT (cat. no. EM05) is recommended. For isolation from swabs or semen, the EXTRACTME DNA SWAB & SEMEN KIT (cat. no. EM06) is proposed.

⚠️ Physiological fluids are a valuable diagnostic material, but also represent a great biological hazard due to the potential pathogen and/or cancer cell content. While working with physiological fluids it is essential to comply with all safety requirements for working with biohazardous material.

1. **Urine and other fluids:** depending on the volume, centrifuge in an appropriate tube at approx. 500 x g for 5 min. Discard the supernatant.

 Sputum: prior to centrifugation, add the appropriate quantity of a mucolytic agent (bromhexine, acetylcysteine). Centrifuge at 3000 x g for 5 min. Discard the supernatant.

2. Wash the cell pellet with 1 ml PBS buffer or saline. Centrifuge at 3000 x g for 60 s.

F. HAIR

Quantity: 10–30 mg hair (100–120 strands), up to 30 mg of hair roots.

Sample material: hair, preferably with roots, or hair roots alone.

⚠️ Hair roots contain living cells, while the rest of the hair bears only traces of degraded gDNA and mtDNA. Downstream applications such as PCR or qPCR should therefore involve small products ≤ 200 bp.

1. Cut off the hair roots and transfer them to a 2 ml tube. If the sample material does not contain hair roots, cut the hair into 3 mm fragments.
2. Add 375 μl TL Buffer, 40 μl 1M DTT and 25 μl Proteinase K. Mix by vortexing for 30 s.

 ⚠️ The DTT supplement is optional. Most hair should be lysed without it; however, some hair types, such as curly, for instance, contain too many disulphide bridges for the Proteinase K to handle.
3. Incubate at 55°C for at least 6 h, or overnight. Vortex for 60–120 s from time to time. A thermomixer may be used.
4. After the lysis is complete, continue the isolation from step 2 of the Isolation Protocol (section XI).

 ⚠️ For small quantities of sample material, elution in 200 μl Elution Buffer, followed by precipitation, is recommended.

G. RODENT TAILS

Quantity: up to 30 mg.

Sample material: rat or mouse tail.

1. Cut the tail into smaller fragments and place in a 2 ml tube.

 ⚠️ For fragmentation instructions refer to the homogenization methods for fresh or frozen solid tissue (section IX A).
2. Add 375 μl TL Buffer. Mix thoroughly by vortexing for 20 s.
3. Add 4 μl RNase A and 25 μl Proteinase K. Incubate at 37°C for 5 min and then at 55°C, depending on the fragmentation' degree; 2–3 hours for well-homogenized samples or 5–16 hours for small fragments. Vortex vigorously for 20 s at least every 1–2 h. A thermomixer may be used.
H. INSECTS
Quantity: 1–30 mg.
Sample material: insects at various stages of life, fresh, frozen or preserved in formalin or ethanol.

1. Wash insects preserved in formalin or ethanol twice with PBS buffer or distilled water. Centrifuge for 60 s at 500 x g. Depending on the fragmentation' degree go to step 1b or proceed with homogenization.

2. Homogenization: cut the insects into smaller fragments. Pound in a mortar with liquid nitrogen until a powder is obtained. Transfer the powder to a 2 ml tube. Homogenization may also be carried out using a tube with bead-beating filling (for instructions refer to section IXA).
 ▲ For fragmentation instructions refer to the homogenization methods for fresh or frozen solid tissue (section IXA).

3. Add 375 μl TL Buffer and vortex vigorously for 60 s.

4. Add 4 μl RNase A and 25 μl Proteinase K. Incubate at 37°C for 5 min and then at 55°C, depending on the fragmentation' degree; 2–3 h for well-homogenized samples, or 5–16 h for small fragments. Vortex vigorously for 20 s at least every 1–2 h. A thermomixer may be used.

 ▲ For small quantities of sample material, elution in 200 μl Elution Buffer, followed by precipitation, is recommended.
X. PRIOR TO ISOLATION

1. Mix well each buffer supplied with the kit.
2. Prepare Proteinase K solution by reconstituting the lyophilizate in an appropriate quantity of Proteinase Buffer.
3. If necessary, reconstitute RNase A lyophilizate in an appropriate quantity of RNase Buffer.
4. Ensure that ethanol has been added to TB, TW1 and TW2 Buffers. If not, add the appropriate quantity of 96–100% ethanol (the volumes can be found on the bottle labels or in the table given in section II).
5. Examine the buffers. If a sediment has occurred in any of them, incubate it at 37°C (TB, TW1 and TW2 Buffers) or at 50–60°C (other buffers) mixing occasionally until the sediment has dissolved. Cool to room temperature.
6. Set a dry block heater or water bath to 55°C.
7. Unless otherwise stated, conduct all the isolation steps at room temperature.
XI. ISOLATION PROTOCOL

STEP 1

Place the fragmented biological material in a 2 ml tube.

a. Add 375 μl TL Buffer and vortex for 20 s.
 ▲ If a thick foam occurs, centrifuge the sample at 11,000 x g for 60–120 s. Refer to section VIII. Recommendations and Important Notes.

b. Add 25 μl Proteinase K and mix by inverting the tube several times or vortexing.
 Incubate at 55°C until the material has been completely digested. Mix-vortex vigorously for 20 s every 30–60 min.

c. If the RNase A is to be used, add 4 μl RNase A and incubate at 37°C for 5 min.

STEP 2

Add 400 μl TB Buffer and mix thoroughly for 10 s.

Centrifuge for 120 s at 11,000–21,000 x g.

Transfer the supernatant into a DNA Purification Column placed in a Collection Tube. Ensure no tissue remains are transferred along with it.

▲ For homogenization with the use of bead-beating tubes: carefully pipet the appropriate volume of the supernatant by placing a 200 μl pipette tip (N.B.: a 1 ml tip may become clogged by the beads) into the filling. Tissue remains should either lie on one side of the tube or at the bottom.

Centrifuge for 60 s at 11,000–15,000 x g.

▲ The inside of DNA Purification Column should be dry after centrifugation. If any liquid remains in the upper part of the column, re-spin it for 120 s at maximum speed.

Transfer DNA Purification Column to a new 2 ml Collection Tube.
STEP 3

Add **600 μl TW1 Buffer** and centrifuge for 30 s at **11 000–15 000 x g**. Discard the filtrate and reuse the Collection Tube.

Add **500 μl TW2 Buffer** and centrifuge for 30 s at **11 000–15 000 x g**.

Discard the filtrate and reuse the Collection Tube.

Centrifuge for 60-120 s at **15 000–21 000 x g**.

⚠️ Wash buffer contains alcohol, which may interfere with some Enzymatic reactions and also decrease the elution efficiency. It is therefore vital to remove the alcohol completely from DNA Purification Column before elution.

Discard the Collection Tube and filtrate and carefully transfer DNA Purification Column to a sterile, 1.5 ml Eppendorf microcentrifuge tube.

STEP 4

⚠️ Other buffer volumes in the 20–200 μl range may be used. For instructions, see section VIII. Recommendations and important notes.

Incubate DNA Purification Column at room temperature for 120 s.

Centrifuge at **11 000–15 000 x g** for 60 s.

Remove DNA Purification Column. Isolated DNA should be stored at **+4°C** or **-20°C** depending on further applications.
XII. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column becomes clogged during purification.</td>
<td>Inappropriate tissue homogenization.</td>
<td>Select the appropriate homogenization conditions (see section IXA).</td>
</tr>
<tr>
<td></td>
<td>Incomplete protein degradation.</td>
<td>Prepare a fresh Proteinase K solution. Ensure that Proteinase K solution is stored at -20°C. Extend the vortexing time, incubate the tissue with Proteinase K in TL Buffer for 16 h until the lysate is clear.</td>
</tr>
<tr>
<td></td>
<td>Tissue remains were transferred onto the membrane.</td>
<td>Pipette the supernatant carefully, without disturbing the tissue pellet.</td>
</tr>
<tr>
<td></td>
<td>DNA Purification Column is overloaded.</td>
<td>Do not exceed the recommended tissue amount or number of cell taken for DNA isolation.</td>
</tr>
<tr>
<td>Low yield of purified DNA.</td>
<td>The tissue was incorrectly stored or preserved; DNA degradation.</td>
<td>Store tissue at -80°C. Avoid subjecting the sample material to repeated freeze/thaw cycles. Ensure that a good quality fixative is used and that the storage conditions are adequate.</td>
</tr>
<tr>
<td></td>
<td>Insufficient fragmentation of the sample material.</td>
<td>Ensure proper tissue homogenization in TL Buffer. The tissue must first be fragmented into the smallest possible pieces and homogenized by an appropriate method.</td>
</tr>
<tr>
<td></td>
<td>Incomplete tissue lysis.</td>
<td>Ensure optimal conditions for Proteinase K activity. The tissue should be as well-fragmented as possible, increase the vortexing time, incubate the tissue with Proteinase K in TL Buffer for 16 h.</td>
</tr>
<tr>
<td></td>
<td>Reduced Proteinase K activity.</td>
<td>Inappropriate storage conditions for Proteinase K. When applicable, ensure that the sample material is thoroughly washed with PBS buffer (see section IX B, C, E and H).</td>
</tr>
<tr>
<td></td>
<td>DNA Purification Column has become clogged.</td>
<td>See “Column becomes clogged during purification”.</td>
</tr>
<tr>
<td></td>
<td>Incomplete DNA elution from the membrane.</td>
<td>Before applying Elution Buffer to the membrane, heat it to 80°C. Apply Elution Buffer directly to the centre of the membrane. Extend the incubation time with Elution Buffer to 10 min. Perform second elution. Increase volume of Elution Buffer to 200 μl.</td>
</tr>
<tr>
<td></td>
<td>The pH of the water used for elution is lower than 7.0.</td>
<td>Use Elution Buffer for DNA elution.</td>
</tr>
<tr>
<td>Issue</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Isolated DNA is of low purity.</td>
<td>Incomplete protein degradation.</td>
<td>Prepare a fresh Proteinase K solution. Ensure that the solution is stored at -20°C. Extend the vortexing time, incubate the tissue with Proteinase K in TL Buffer for 16 h until the lysate is clear.</td>
</tr>
<tr>
<td></td>
<td>Reduced Proteinase K activity.</td>
<td>Inappropriate storage conditions for Proteinase K. When applicable, ensure that the sample material is thoroughly washed with PBS buffer (see section IX B, C, E and H).</td>
</tr>
<tr>
<td>Purified DNA is degraded.</td>
<td>Old or damaged material was used.</td>
<td>Performing an isolation from fresh or properly preserved tissues is recommended.</td>
</tr>
<tr>
<td></td>
<td>Inappropriate tissue storage conditions or improper preservation.</td>
<td>Store tissue at -80°C. Avoid subjecting the sample material to repeated freeze/thaw cycles. Ensure that a good quality fixative is used and that the storage conditions are adequate.</td>
</tr>
<tr>
<td></td>
<td>The DNA degraded as a result of over-intensive homogenization.</td>
<td>The recommended homogenization conditions should be applied (see section IXA).</td>
</tr>
<tr>
<td>Inhibition of downstream enzymatic reactions.</td>
<td>Purified DNA contains residual alcohol.</td>
<td>Repeat the isolation, giving particular attention to ensuring that no residual TW2 Buffer is left in DNA Purification Column after centrifugation in step 13.</td>
</tr>
</tbody>
</table>
XIII. EXAMPLES OF ISOLATION EFFICIENCIES FROM FRESH BIOLOGICAL MATERIAL

<table>
<thead>
<tr>
<th>SAMPLE MATERIAL</th>
<th>Mass /quantity</th>
<th>Elution volume</th>
<th>DNA conc.</th>
<th>A_{260}/A_{280}</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat liver</td>
<td>30 mg</td>
<td>200 μl</td>
<td>235.2 ng/μl</td>
<td>1.86</td>
<td>47 μg</td>
</tr>
<tr>
<td>Rat skeletal muscle</td>
<td>20 mg</td>
<td>200 μl</td>
<td>50.5 ng/μl</td>
<td>1.80</td>
<td>10.1 μg</td>
</tr>
<tr>
<td>Rat heart</td>
<td>20 mg</td>
<td>200 μl</td>
<td>123.5 ng/μl</td>
<td>1.84</td>
<td>24.7 μg</td>
</tr>
<tr>
<td>Yellow adipose tissue</td>
<td>30 mg</td>
<td>200 μl</td>
<td>49 ng/μl</td>
<td>1.80</td>
<td>9.8 μg</td>
</tr>
<tr>
<td>Brown adipose tissue</td>
<td>30 mg</td>
<td>200 μl</td>
<td>116.7 ng/μl</td>
<td>1.88</td>
<td>23.3 μg</td>
</tr>
<tr>
<td>Rat kidney</td>
<td>20 mg</td>
<td>200 μl</td>
<td>183.4 ng/μl</td>
<td>1.79</td>
<td>36.7 μg</td>
</tr>
<tr>
<td>HT29 cell culture</td>
<td>1×10^5</td>
<td>200 μl</td>
<td>51.5 ng/μl</td>
<td>1.81</td>
<td>10.3 μg</td>
</tr>
<tr>
<td>HCT116 cell culture</td>
<td>3×10^6</td>
<td>200 μl</td>
<td>60 ng/μl</td>
<td>1.71</td>
<td>12.0 μg</td>
</tr>
<tr>
<td>Rat brain</td>
<td>20 mg</td>
<td>200 μl</td>
<td>9.4 ng/μl</td>
<td>1.69</td>
<td>1.88 μg</td>
</tr>
<tr>
<td>Insects</td>
<td>2.7 mg</td>
<td>30 μl</td>
<td>12.9 ng/μl</td>
<td>1.65</td>
<td>0.39 μg</td>
</tr>
</tbody>
</table>
XIV. EXAMPLES OF FRESH BIOLOGICAL MATERIAL PROCESSING TIMES

<table>
<thead>
<tr>
<th>SAMPLE MATERIAL</th>
<th>Digestion in a block heater, no homogenization, periodical mixing</th>
<th>Digestion in a thermomixer</th>
<th>Liquid nitrogen homogenization</th>
<th>Homogenization with Bead-Beating Tubes</th>
<th>Approximate lysis time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat liver</td>
<td>3-6 h</td>
<td>2-4 h</td>
<td>1-2 h</td>
<td>≤ 1h</td>
<td>min 1 h, max 6 h</td>
</tr>
<tr>
<td>Rat skeletal muscle</td>
<td>2-3 h</td>
<td>2 h</td>
<td>≤ 1h</td>
<td>0.5-1 h</td>
<td>min 0.5 h, max 3 h</td>
</tr>
<tr>
<td>Rat heart</td>
<td>2-3 h</td>
<td>1-1.5 h</td>
<td>≤ 1h</td>
<td>0.5-1 h</td>
<td>min 0.5 h, max 3 h</td>
</tr>
<tr>
<td>Yellow adipose tissue</td>
<td>1-1.5 h</td>
<td>1 h</td>
<td>0.5 h</td>
<td>0.5 h</td>
<td>min 0.5h, max 1.5h</td>
</tr>
<tr>
<td>Brown adipose tissue</td>
<td>1-1.5 h</td>
<td>1 h</td>
<td>0.5 h</td>
<td>0.5 h</td>
<td>min 0.5h, max 1.5h</td>
</tr>
<tr>
<td>Rat kidney</td>
<td>1.5-3 h</td>
<td>0.5-2 h</td>
<td>0.5-1.5 h</td>
<td>0.5-1.5 h</td>
<td>min 0.5 h, max 3 h</td>
</tr>
<tr>
<td>HT29 cell culture</td>
<td>0.5-1 h</td>
<td>5-30 min</td>
<td>No data</td>
<td>app. 5 min</td>
<td>min 5 min, max 1 h</td>
</tr>
<tr>
<td>HCT116 cell culture</td>
<td>0.5-1 h</td>
<td>5-30 min</td>
<td>No data</td>
<td>app. 5 min</td>
<td>min 5 min, max 1 h</td>
</tr>
<tr>
<td>Rat brain</td>
<td>0.5-1 h</td>
<td>0.5-1 h</td>
<td>No data</td>
<td>No data</td>
<td>min 0.5 h, max 1 h</td>
</tr>
<tr>
<td>Insects</td>
<td>No data</td>
<td>1-2 h</td>
<td>0.5-2 h</td>
<td>0.5-2 h</td>
<td>min 0.5 h, max 2 h</td>
</tr>
</tbody>
</table>
XV. SAFETY INFORMATION

Proteinase K (lyophilized)

Danger
- H315, H319, H334, H335
- P261, P271, P304+P340, P342+P311, EUH208

TL Buffer

Warning
- H319
- P264, P305+P351+P338

TB Buffer

Danger
- H318, H302, H332, H315, H412
- P280, P261, P305+P351+P338, P301+P312 P330, P304+340 P312

TW1 Buffer

Danger
- H318, H315, H412
- P280, P305+P351+P338 P310

EUH208 Contains Proteinase. May produce an allergic reaction. **H302** Harmful if swallowed. **H315** Causes skin irritation. **H318** Causes serious eye damage. **H319** Causes serious eye irritation. **H332** Harmful if inhaled. **H334** May cause allergy or asthma symptoms or breathing difficulties if inhaled. **H335** May cause respiratory irritation. **H412** Harmful to aquatic life with long-lasting effects. **P261** Avoid breathing dust/fumes/gas/mist/vapours/spray. **P264** Wash hands thoroughly after handling. **P271** Use only outdoors or in a well-ventilated area. **P280** Wear protective gloves/protective clothing/eye protection/face protection. **P305+P351+P338** IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. **P342+P311** If experiencing respiratory symptoms: Call a POISON CENTER or doctor/physician. **P304+P340** IF INHALED: Remove person to fresh air and keep comfortable for breathing. **P312** Call a POISON CENTER/doctor if you feel unwell. **P301+P312 P330** IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell. Rinse mouth. **P310** Immediately call a POISON CENTER/doctor.